乐淘资源 交流杂谈 二阶导数(二阶导数怎么求)

二阶导数(二阶导数怎么求)

广告位

什么是二阶导数

所谓二阶导数,即原函数导数的导数,将原函数进行二次求导。

例如:y=x^2的导数为y=2x,二阶导数即y=2x的导数为y=2。

二阶导数的几何意义

意义如下:

(1)切线斜率变化的速度

(2)函数的凹凸性。

关于你的补充:

二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。

应用:

如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,俯弧碘旧鄢搅碉些冬氓那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f”(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

二阶导数的推导公式

=d(dy)/dx*dx=d²y/dx²

dy是微元,书上的定义dy=f'(x)dx,因此dy/dx就是f'(x),即y的一阶导数。

dy/dx也就是y对x求导,得到的一阶导数,可以把它看做一个新的函数。

d(dy/dx)/dx,就是这个新的函数对x求导,也即y的一阶导数对x求导,得到的就是二阶导数。

函数凹凸性

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f”(x)>0,则f(x)在[a,b]上的图形是凹的。

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

二阶导数怎么求啊,求详细

x’=1/y’

x”=(-y”*x’)/(y’)^2=-y”/(y’)^3

将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f”(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

扩展资料:

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f”(x)>0,则f(x)在[a,b]上的图形是凹的;

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

什么是二阶导数?

设参数方程 x(t), y(t),则二阶导数:

一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率。

连续函数的一阶导数就是相应的切线斜率。一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则不增不减。

而二阶导数可以反映图象的凹凸。二阶导数大于0,图象为凹;二阶导数小于0,图象为凸;二阶导数等于0,不凹不凸。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。

扩展资料:

如果加速度并不是恒定的,某点的加速度表达式就为:a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数)

又因为v=dx/dt 所以就有:a=dv/dt=d²x/dt² 即元位移对时间的二阶导数。

将这种思想应用到函数中 即是数学所谓的二阶导数f'(x)=dy/dx (f(x)的一阶导数);f”(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)。

如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

参考资料来源:百度百科–二阶导数

二阶导数怎么求?

x’=1/y’,x”=(-y”*x’)/(y’)^2=-y”/(y’)^3。

二阶导数就是一阶导数的导数,一阶导数可以判断函数的增,减性,二阶导数可以判断函数增、减性的快慢。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

扩展资料

二阶导的用法:

判断的单调性则需判断的正负,假设的正负无法判断,则把或者中不能判断正负的部分(通常为分子部分)设为新函数,如果通过对进行求导继而求最值,若或则可判断出的正负继而判断的单调性,流程如下图所示:

但是如果调整函数转化为一阶导数并且还出现了一阶导数最小值小于等于零,或一阶导数最大值大于等于零的时候,则单纯的二阶导数将失灵,此时采用的是零点尝试法,即确定一阶导数的零点的大致位置。

参考资料来源:百度百科-二阶导数

二阶导数定义?

应该是△x趋于0,不是x趋于0。以极限定义法定义:函数f(x)在x。处的二阶导数f”(x。)是导函数y=f'(x)在x。处的导数。望采纳

本文来自网络,不代表乐淘资源立场,转载请注明出处,如有侵权问题需要处理,请联系站长删除。联系QQ 917118162

作者: admin

上一篇
下一篇
广告位
联系我们

联系我们

在线咨询: QQ交谈

邮箱: 917118162@qq.com

工作时间:周一至周五,9:00-17:30
关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部